Synthesis, characterization, crystal structure, and solution conformation of $(-)_{436}-\left(S_{\mathrm{C}}, S_{\mathrm{C}}\right)$ -$\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Co}^{*}\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right) \mathrm{I}\left(\mathrm{Ph}_{2} \mathrm{PNHC}^{*} \mathrm{H}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right)$, an easily resolvable chiral-at-metal complex

Chet Jablonski, Zhongxin Zhou and John N. Bridson
Department of Chemistry, Memorial University, St. John's, Newfoundland A1B 3×7 (Canada)

(Received August 21, 1991)

Abstract

A convenient method for the preparation and resolution of $(-)_{436}-\left(S_{\mathrm{Co}}, S_{\mathrm{C}}\right)-\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Co}^{*}\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right) \mathrm{I}\left(\mathrm{Ph}_{2} \mathrm{PNHC}^{*} \mathrm{H}(\mathrm{CH})_{3} \mathrm{Ph}\right)(2 \mathrm{a})$ from racemic $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{CO}^{*}\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right)(\mathrm{CO}) I$ with an optical yield $>99 \%$ is described. The absolute configuration of 2 a was determined by crystallography. $(-)_{436}-2 \mathrm{a}$ crystallizes in the space group $P 2_{1} 2_{1} 2_{1}$ with $a=16.362(1), b=19.944(4), c=9.417$ (2) \AA, $V=3073.0(8) \AA^{3}, Z=4, R=0.071, R_{w}=0.064$.

Introduction

Chiral-at-metal, pseudo-octahedral, three legged "piano stool" complexes are excellent templates for stoichiometric asymmetric synthesis and have therefore been extensively studied [1]. Previous work in this laboratory [2] has demonstrated that diastereoselective Arbuzov dealkylation of prochiral phosphonite complexes $\eta^{5}-\mathrm{CpCo}^{\star} \mathrm{I}\left(\mathrm{P}^{*}\right.$-donor) $\left(\mathrm{PR}\left(\mathrm{OR}^{\prime}\right)_{2}\right)^{+}$formed in situ by iodide substitution of $\mathrm{CpCo}^{*} \mathrm{I}_{2}\left(\mathrm{P}^{*}\right.$-donor) proceeds with good to excellent optical yields. Our studies of $\mathbf{M}^{\star} \rightarrow \mathbf{P}_{\alpha}$ chiral induction were, however, complicated by the formation of epimeric Co^{\star} centres in the substitution step which led ultimately to a mixture of four diastereomeric products. We therefore sought to prepare a mono-halogenated, Co-chiral substrate which would allow a simplified stereochemical assay. Here we report the facile synthesis of the chiral, perfluoro alkyl η^{5}-indenyl analog 2a which is easily resolved in gram quantities by a second order asymmetric transformation [3].

Results and discussion

A Co-epimeric mixture of the title complex 2a, b was synthesized in high yield by substitution of carbon monoxide in racemic 1 by the chiral aminophosphine

[^0]

1

2a, > 99.8\%

2b, < 0.2\%
yield 95%
Scheme 1.
(S)-(-)diphenyl((1-phenylethyl)amino)phosphine (PNH^{*}) [4] at room temperature in benzene solution (Scheme 1). Sublimation of benzene solvent at $0^{\circ} \mathrm{C} / 0.1$ Torr affords the crude product as a dark red-brown powder in 95% yield. TLC and ${ }^{1} \mathrm{H}$ NMR analysis show that the crude product is in fact a single diastereomer ($>99.8 \%$ 2a and $<0.2 \%$ 2b by integration of ${ }^{1} \mathrm{H}$ NMR doublets of $\mathrm{C}^{\star}-\mathrm{Me}$ at 1.25 and 0.90 ppm). In this synthesis the optical yield is therefore equal to the chemical yield.

That resolution occurs during workup was established by three independent experiments: (i) NMR reactions at ambient temperature in benzene- d_{6} establish that the reaction of 1 with PNH^{\star} is very rapid, and complete conversion to 2 occurs during mixing to afford $2 \mathrm{~b}: 2 \mathrm{a}$ in a kinetic product ratio of $46: 54$ at $22^{\circ} \mathrm{C}$; (ii) variable temperature equilibrium concentration measurements of $2 \mathrm{~b}: 2 \mathrm{a}$ by ${ }^{1} \mathrm{H}$ NMR in benzene $-d_{6}$ give $\Delta H=2.6 \pm 0.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=7.2 \pm 0.7 \mathrm{~J} \mathrm{~K}^{-1}$ mol^{-1} for $K_{\text {eq }}=\mathbf{2 b} / \mathbf{2 a}$ giving a calculated equilibrium ratio for $\mathbf{2 b} / \mathbf{2 a}$ of $44: 56$ at $+5^{\circ} \mathrm{C}$; and (iii) workup of the reaction by sublimation of benzene solvent at low temperature ($-11^{\circ} \mathrm{C}$) to avoid formation of liquid phase afforded a 34:66 Co-epimeric mixture of $\mathbf{2 b}: \mathbf{2 a}$. Isolation of a single diastereomer by sublimation at $0^{\circ} \mathrm{C}$ (Experimental section) is therefore the result of a second-order asymmetric transformation [3] which occurs during workup. Freezing point depression from the dissolved epimeric mixture $\mathbf{2 a}, \mathbf{b}$ provides for the presence of a small volume of liquid phase benzene at $0^{\circ} \mathrm{C}$ in which fractional crystallization of the less soluble diastereomer $2 a$ occurs, replenished by shifting the Co epimerization equilibrium $\mathbf{2 b} \rightleftharpoons \mathbf{2} \mathbf{a}$.

The structure of $\mathbf{2 a}, \mathbf{b}$ was established spectroscopically, and in the case of $\mathbf{2 a}$ via a single crystal X-ray study. ${ }^{1} \mathrm{H}$ NMR resonances for the indenyl H_{1} (see Fig. 5 below for indenyl ring numbering) and for CH_{3} on PNH^{\star} are clearly distinguishable for the two diastereomers 2a and 2b (2a: $\delta 4.50\left(\mathrm{H}_{1}\right), 1.25 \mathrm{ppm}\left(\mathrm{d}, \mathrm{CH}_{3}\right.$, ${ }^{3} J=6.54 \mathrm{~Hz}$); 2b $\delta 4.64\left(\mathrm{H}_{1}\right), 0.90 \mathrm{ppm}\left(\mathrm{d}, \mathrm{CH}_{3},{ }^{3} J=6.54 \mathrm{~Hz}\right)$), see Experimental section. The ring carbons $\mathrm{C}_{1,3}, \mathrm{C}_{5,6}, \mathrm{C}_{4,7}$ and $\mathrm{C}_{3 \mathrm{a}, 7 \mathrm{a}}$ as well as $\mathrm{C}_{\alpha} F_{2}$ and $\mathrm{C}_{\beta} F_{2}$ fluorine atoms are rendered diastereotopic by the chiral $\mathrm{Co}^{\mathrm{III}}$ center, and distinct ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ resonances are observed for all.

Figure 1 shows the solid state structure of complex 2a, determined by X-ray diffraction methods on a single crystal of 2a grown by slow diffusion of hexane onto a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Attempts made to model a disorder involving two

Fig. 1. Molecular structure of 2a.
conformations of the $\mathrm{C}_{3} \mathrm{~F}_{7}$ group which became apparent on refinement were unsuccessful. Although giving a reduced R value, thermal parameters calculated throughout the molecule were unreasonable. Therefore the structure was refined assuming the presence of a single, major conformation for the $\mathrm{C}_{3} \mathrm{~F}_{7}$ group. This approach resulted in large $B_{\text {eq }}$ values for several atoms in $\mathrm{C}_{3} \mathrm{~F}_{7}$ and a final Fourier difference map which showed significant peaks in the area of $\mathrm{C}_{3} \mathrm{~F}_{7}$. Selected bond angles and bond distances are given in Table 1. Atomic coordinates are given in

Table 1
Selected bond distances (\AA) and bond angles (deg) for 2a

Distances				Angles	
I-Co	2.599(2)	C21-C22	1.39(3)	I-Co-P	95.7(i)
$\mathrm{Co}-\mathrm{P}$	2.275(5)	C21-C29	1.41(3)	I-Co-C21	92.3(6)
Co-C21	2.11(2)	C22-C23	1.36(2)	I-Co-C22	128.3(8)
Co-C22	2.07(2)	C23-C24	1.42(2)	I-Co-C23	153.8(5)
Co-C23	2.06(1)	C24-C25	1.45(2)	I-Co-C24	120.7(5)
Co-C24	2.30(2)	C24-C29	1.44(2)	I-Co-C29	$90.7(5)$
Co-C29	2.26(2)	C25-C26	1.38(2)	I-Co-C30	94.61(8)
Co-C30	1.962(2)	C26-C27	1.41(3)	P-C0-C21	157.2(6)
P-N	1.68(1)	C27-C28	1.38(3)	P-Co-C22	135.8(8)
$\mathrm{N}-\mathrm{Cl}$	1.46(2)	C28-C29	1.35(3)	$\mathrm{P}-\mathrm{Co}-\mathrm{C} 23$	99.8(6)
				P-Co-C24	94.5(4)
				P-Co-C29	121.1(6)
				P-Co-C30	90.9(1)
				C21-C0-C30	109.8(7)
				C22-C0-C30	90.3(6)
				C23-C0-C30	106.1(6)
				C24-Co-C30	143.4(5)
				C29-Co-C30	146.9(6)

Table 2
Atomic coordinates and $B_{\text {eq }}$ for $2 \mathbf{2}$
$B_{\mathrm{eq}}=8 \frac{\pi^{2}}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} a_{i}^{*} a_{j}^{*} \rightarrow a_{i} a_{j}$

Atom	x	y	z	$B_{\text {eq }}$
I(1)	0.24379(7)	0.20943(7)	0.1436(1)	5.37(6)
$\mathrm{Co}(1)$	0.1131(1)	0.2751(1)	0.0713(2)	3.6(1)
$\mathrm{P}(1)$	0.1242(2)	0.2544 (2)	-0.1655(5)	3.2(2)
$F(1)$	0.2252(7)	$0.3660(6)$	-0.054(1)	9.9(4)
$F(2)$	$0.1120(7)$	0.4151(5)	-0.009(1)	8.6(3)
F(3)	0.272(1)	0.375(1)	0.158(2)	22.9(8)
F(4)	0.1855(8)	0.3808(6)	0.263(1)	9.6(4)
F(5)	0.151(1)	0.497(1)	0.183(2)	21.1(8)
F(6)	0.242(1)	0.4951(8)	0.051(2)	13.6(5)
F(7)	0.275(1)	$0.489(1)$	$0.246(3)$	22.4(8)
$\mathrm{N}(1)$	0.2213(6)	0.2540 (6)	-0.223(1)	3.1(6)
C(1)	0.2494(9)	0.2279 (7)	-0.359(2)	3.6(7)
C(2)	0.3201(9)	0.2689(9)	-0.413(2)	6(1)
C(3)	0.2722(8)	0.1526(8)	-0.354(2)	3.8(8)
C(4)	0.318(1)	$0.130(1)$	-0.236(2)	5(1)
C(5)	0.340(1)	0.062(1)	-0.231(2)	5(1)
C(6)	0.311(1)	0.017(1)	-0.335(3)	6 (1)
C(7)	$0.264(2)$	0.040(1)	-0.446(3)	$9(2)$
C(8)	0.243(1)	0.109(1)	-0.461(2)	5(1)
C(9)	0.0825(8)	0.1735(8)	-0.228(2)	2.9(8)
C(10)	0.031(1)	0.1647(9)	-0.334(2)	4(1)
C(11)	0.004(1)	0.105(1)	-0.376(2)	5(1)
C(12)	0.034(1)	0.048(1)	-0.301(2)	6(1)
C(13)	0.087(1)	0.057(1)	-0.190(2)	5(1)
C(14)	0.116 (1)	0.1164(9)	-0.148(2)	4.4(9)
C(15)	0.0699(9)	0.3153(7)	-0.280(2)	$3.0(8)$
C(16)	$0.1131(8)$	0.3623(8)	-0.364(2)	4.1(9)
C(17)	0.075(1)	0.4097(8)	-0.447(2)	5(1)
C(18)	-0.008(1)	0.4089(9)	-0.455(2)	5(1)
C(19)	-0.053(1)	0.366 (1)	-0.366(2)	$6(1)$
C(20)	-0.017(1)	0.320(1)	-0.286(2)	5(1)
C(21)	$0.064(1)$	0.268 (1)	$0.278(2)$	$6(1)$
C(22)	0.028(1)	0.320(1)	0.202(3)	7(2)
C(23)	-0.010(1)	0.297(1)	0.083(2)	5(1)
C(24)	-0.0142(8)	0.227(1)	0.092(2)	4(1)
C(25)	-0.058(1)	0.178(1)	$0.006(2)$	5(1)
C(26)	-0.053(1)	0.113(1)	0.057(2)	6(1)
C(27)	$0.000(1)$	0.094(1)	$0.168(3)$	7(1)
C(28)	0.040(1)	$0.143(2)$	0.244(2)	$9(2)$
C(29)	$0.036(1)$	$0.209(1)$	0.213(2)	5(1)
C(30)	0.1697	0.3612	0.0489	7.8(6)
C(31)	0.2072	0.3936	0.1792	-
C(32)	0.2119	0.4788	0.1440	39(5)
H(1)	0.2615	0.2724	-0.1617	3.7
H(2)	0.2058	0.2325	-0.4250	4.3
H(3)	0.3636	0.2669	-0.3468	6.8
H(4)	0.3376	0.2517	-0.5019	6.8
H(5)	0.3030	0.3142	-0.4244	6.8
H(6)	0.3331	0.1604	-0.1627	5.8
H(7)	0.3756	0.0469	-0.1570	6.0

Table 2 (continued)

Atom	x	y	z	$B_{\text {eq }}$
H(8)	0.3234	-0.0295	-0.3273	7.2
H(9)	0.2454	0.0094	-0.5148	10.9
H(10)	0.2115	0.1246	-0.5380	5.8
H(11)	0.0122	0.2033	-0.3840	4.9
H(12)	-0.0344	0.1014	-0.4512	6.6
H(13)	0.0178	0.0040	-0.3292	7.2
H(14)	0.1047	0.0188	-0.1399	5.6
H(15)	0.1540	0.1212	-0.0741	5.2
H(16)	0.1710	0.3608	-0.3633	4.9
H(17)	0.1055	0.4425	-0.4971	6.4
H(18)	-0.0357	0.4372	-0.5198	5.5
H(19)	-0.1110	0.3698	-0.3624	6.6
H(20)	-0.0491	0.2892	-0.2314	6.3
H(21)	0.0988	0.2711	0.3568	7.6
H(22)	0.0291	0.3657	0.2297	7.7
H(23)	-0.0299	0.3239	0.0060	5.5
H(24)	-0.0880	0.1895	-0.0769	6.5
H(25)	-0.0861	0.0801	0.0137	7.0
H(26)	0.0077	0.0476	0.1899	8.5
H(27)	0.0726	0.1290	0.3223	9.9

Table 2. The coordination geometry is best described as a distorted octahedron with η^{5}-indenyl occupying three facial coordination sites. $\mathrm{I}-\mathrm{Co}-\mathrm{P}, \mathrm{I}-\mathrm{Co}-\mathrm{C}(30)$, and $\mathrm{P}-\mathrm{Co}-\mathrm{C}(30)$ interligand bond angles approximate to 90°. The 5 -membered ring of the η^{5}-indenyl ligand in 2 a shows small but characteristic distortions from planarity in the solid state [5]. A Co displacement towards $C_{1}-C_{3}\left(\Delta_{M-C}\right.$ defined as $d\left(\mathrm{Co}-\mathrm{C}_{3 \mathrm{a}}, \mathrm{C}_{7 \mathrm{a}}\right)-d\left(\mathrm{Co}-\mathrm{C}_{1}, \mathrm{C}_{3}\right)$ is $0.2 \AA$) as well as a hinge angle of 10.79° between the planes defined by $C_{1}-C_{2}-C_{3}$ and $C_{1}-C_{3}-C_{3 a}-C_{7 a}$ and a fold angle of 14.93° between the plane $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ and the best plane containing $\mathrm{C}_{3 \mathrm{a}}-\mathrm{C}_{4}-\mathrm{C}_{5}-$ $\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{C}_{7 \mathrm{a}}$ are consistent with a pronounced "slip fold" distortion. Comparison of the ${ }^{13} \mathrm{C}$ chemical shift difference $\left(\Delta \delta\left({ }^{13} \mathrm{C}\right)=\delta \mathrm{C}_{\mathrm{C3a}, \mathrm{C7a}(\eta \text {-indenyl) }}-\delta \mathrm{C}_{\mathrm{C} 3 \mathrm{a}, 7 \mathrm{aa} \text { (indenyl sodium) })}\right)$ of $\mathbf{2 a}$ with the results of Baker and Marder [5] suggests that this distortion persists in solution. The calculated chemical shift difference parameters, $\Delta \delta \mathrm{C}_{\mathrm{C} 3 \mathrm{a}}=-18.17$ and $\Delta \delta \mathrm{C}_{\mathrm{C7a}}=-18.99$, for 2a show that the indenyl ligand in 2 a is located in the distorted η^{5} range.

Figures 1 and 2 show that 2a adopts a solid state conformation in which two ligand phenyl rings "stacks" with the indenyl aromatic ring. The mean distance between the best plane defined by the phenyl rings C9-C14 and C24-C29 is $3.28(2) \AA$ with a dihedral angle of (3.0°) defined by a slight tilt of C24-26 toward the plane of $\mathrm{C} 9-\mathrm{C} 14$. The mean interplanar distances from $\mathrm{C} 3-\mathrm{C} 8$ to the best plane of $\mathrm{C} 9-\mathrm{C} 14$ is 3.43 (2) \AA with dihedral angle of 15.4°. The measured interplanar distances are comparable to those of graphite ($3.35 \AA$).

Reference to the crystal structure of Fig. 1 shows that the absolute configuration of $(-)_{436}-2 \mathrm{a}$ is S_{Co} based on the modified CIP [6] preference I $>\eta^{5}$-indenyl $>$ $\mathrm{PNH}^{\star}>\mathrm{R}_{\mathrm{f}}$. The CD spectrum of 2a is shown in Fig. 3; however, owing to stereochemical lability at Co , we were unable to isolate diastereomerically pure $\mathbf{2 b}$ for comparison.

Fig. 2. Molecular structure of $\mathbf{2 a}$ (top view).

Chemical shift assignments and solution conformation of 2a were investigated using ${ }^{1} \mathrm{H}$ nuclear Overhauser effect difference spectra (NOED) at $-30^{\circ} \mathrm{C}$ in order to minimize Co-epimerization [7]. Figure 4 shows ${ }^{1} \mathrm{H}$ NOED spectra of 2a obtained at 300 MHz on a sample containing ca. 20% isomer 2 b . Spectra b , d, and e allow assignments of the η^{5} ring protons, $\mathrm{H}_{1}-\mathrm{H}_{3}$ (cf. Experimental). Spectrum d shows strong correlations of the signal assigned to H_{2} at 5.65 ppm with the signals at 6.63 and 4.50 ppm which are then confidently assigned to H_{3} and H_{1}. Spectrum b correlates $\mathrm{H}_{3} \rightarrow \mathrm{H}_{2}$ while spectrum e confirms the assignments of H_{1} and H_{2}. Considerable degeneracy is observed in the aromatic region. However, spectra f and g locate nonisochronous $\mathrm{C}^{\star} \mathrm{H}(\mathrm{Me})$ Ph ortho protons in the multiplets at 6.76 ppm (integration 3 H , overlapped with H_{3} and an unassigned phenyl proton) and 7.87 ppm (integration 2 H , overlapped with H_{7}) implying a restricted $\mathrm{C}^{\star}-\mathrm{Ph}$ phenyl rotation. Restricted rotation of one of the diastereotopic PPh_{2} rings which is

Fig. 3. Circular dichroism (CD) spectrum of 2a.

Fig. 4. ${ }^{1} \mathrm{H}$ nuclear Overhauser enhancement difference (NOED) spectra of $\mathbf{2 a}$ (irradiated peak marked with an asterisk).
"sandwiched" between the indenyl ligand and $\mathrm{C}^{\star}-\mathrm{Ph}$ is also apparent from spectrum e which correlates $\mathrm{H}_{1}(4.50 \mathrm{ppm})$ with the doublet at 6.42 ppm (integration 1 H) and the multiplet at 7.87 ppm assigned to H_{7}. Assignment of the 6.42 ppm signal to one nonisochronous ortho proton of a diastereotopic PPh_{2} group is consistent with restricted phenyl rotation arguments presented above and suggests a solution conformation which places PNH^{*} syn to the ring junction ($\mathrm{C}_{7 \mathrm{a}}$) similar to what is observed in the solid state, cf. Fig. 5. Variable temperature NMR experiments on $2 a$ were carried out to search for phenyl rotation leading to coalescence behaviour of the nonequivalent $o-\mathrm{C}_{6} \mathrm{H}_{5}$ resonances of $\mathrm{P}-\mathrm{Ph}$ at 6.42 and $\mathrm{C}-\mathrm{Ph}$ at 7.87 ppm . These experiments were limited by facile Co epimerization leading to an equilibrium mixture $\mathbf{2 a}, b$ and sample deterioration at the upper temperature limit. Examination of spectra recorded at $25-80^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed no line broadening associated with site exchange. The remaining NMR assignments follow from consideration of splitting patterns (cf. Experimental section).

Fig. 5. Solution conformation of $\mathbf{2 a}$.

The facile preparation of resolved 2 a and the presence of a reactive $\mathrm{Co}-\mathrm{I}$ bond suggest use as an organometallic chiral synthon. However, such applications of 2a are severely limited by facile Co epimerization. Preliminary kinetic studies indicate that diastereomerically pure $\mathbf{2 a}$, like the related $\mathrm{CpCo}\left(\mathrm{L}-\mathrm{L}^{*}\right) \mathrm{X}$ containing labile X reported by Brunner [8], epimerizes readily by a dissociative mechanism to give an approximately $50: 50$ equilibrium mixture of $\mathbf{2 b}: \mathbf{2 a}$. The approach to equilibrium in benzene solution follows clean first order kinetics at $22-80^{\circ} \mathrm{C}$. However the measured first order rate constants measured by NMR are irreproducible with values ranging from 10^{-6} to $10^{-4} \mathrm{~s}^{-1}$ at $22^{\circ} \mathrm{C}$. A single electron mechanism [9*] involving homolysis of the Co -halide bond may be responsible.

Experimental

General

All manipulations were carried out under prepurified argon or dinitrogen using standard Schlenk techniques. THF and benzene were freshly distilled from deep purple solutions of sodium benzophenone ketyl. (S)-(-)diphenyl((1-phenylethyl) amino) phosphine (PNH^{*}) was prepared using literature methods [4] from commercial (Aldrich) (S)-(-)diphenyl((1-phenylethyl)amine and diphenylchlorophosphine. $\mathrm{n}-\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{I}$ (Aldrich) was used as received. Technical grade indene and 1,5-cyclooctadiene (COD) were distilled at $54^{\circ} \mathrm{C} / 5 \mathrm{Torr}$ and $57^{\circ} \mathrm{C} / 30$ Torr, respectively, before use. $\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Co}(\mathrm{CO})_{2}$ was prepared using a modification of the literature method [10,11] described below. NMR spectra were measured on a GE 300-NB instrument. Chemical shifts are reported in ppm with respect to internal TMS $\left({ }^{1} \mathrm{H}\right), \mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F}\right)$, or CDCl_{3} solvent (77.0 ppm) in the case of the ${ }^{13} \mathrm{C}$ data. IR spectra were measured as neat films cast on KBr disks or as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions in KBr cells on a Mattson Polaris instrument. Proton NOED spectra were determined at $-30^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under steady state conditions as descirbed previously [2]. Melting points were determined under dinitrogen in sealed capillaries and are uncorrected. Elemental analyses were determined by Guelph Chemical Laboratories, Ontario. Optical rotation measurements were determined in methylene chloride ($c a .1 \mathrm{mg} / \mathrm{ml}$) in a 1 cm path length cell with a Perkin-Elmer Model 241 polarimeter. Circular dichroism (CD) spectra were determined in methylene chloride (ca. $1 \mathrm{mg} / \mathrm{mL}$) on a Jasco J 40 A apparatus using a 0.1 cm path length cell.

Crystal structure determination

Crystal data were collected at ambient temperature on a Rigaku AFC6S diffractometer with graphite monochromated $\mathrm{Mo}-K_{\alpha}$ radiation ($\lambda=0.71069$) and a 2 KW sealed tube generator, using the $\omega-2 \theta$ scan technique to a maximum 2θ value of 50.0°. Cell constants and an orientation matrix for data collection were obtained from a least-squares refinement using the setting angles of 25 carefully centered reflections in the range $31.26<2 \theta<40.68^{\circ}$. The structure was solved by direct methods using texan software (Molecular Structure Corporation). Data from two octants were collected and redundant reflections removed during solution and preliminary refinement. Final rounds of refinement included hydrogen

[^1]Table 3
Summary of crystallographic data for 2a

Formula	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{CoF}_{7} \mathrm{INP}$
F.W. (g mol ${ }^{-1}$)	775.37
Crystal habit	black rectangular plate
Crystal size (mm)	$0.37 \times 0.27 \times 0.08$
Crystal system	Orthorhombic
No. of reflections used	
2θ range (${ }^{\circ}$)	31.3-40.7
Omega scan peak width	
Lattice parameters	
$a(\mathrm{~A})$	16.362(1)
b (Å)	19.944(4)
$c(\AA)$	9.417(2)
$V\left(\AA^{3}\right)$	3073.0 (8)
Space group	P2 $1_{1} 2_{1}$ (No. 19)
Z	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.676
$F(000)$	1536
$\mu\left(\mathrm{Mo}-K_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	16.66
Scan width (deg)	$0.89+0.30 \tan \theta$
$2 \theta_{\text {max }}$ (deg)	50.0
No. reflections measured	
total	6184
unique	3092
$R_{\text {int }}$	0.055
Corrections	Lorentz polarization (trans. factors: $0.77-1.00$)
Function minimized	$\Sigma w\left(\left\|F_{0}\right\|-\left\|F_{v}\right\|\right)^{2}$
Least squares weights	$4 F_{\mathrm{o}}{ }^{2} / \sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)$
p factor	0.01
Anomalous dispersion	All non-hydrogen atoms
No. of observations ($I>3.00 \sigma(I)$)	3415
No. of variables	329
Reflection/parameter ratio	10.38
R	0.071
$R_{\text {w }}$	0.064

atoms at calculated positions with thermal parameters set 20% greater than those of the connected atoms. Absolute configuration was determined by refining both enantiomers to convergence on the complete data set with anomalous dispersion corrections included. The configuration of Fig. 1 refined to a value of 0.6% lower than its enantiomer. Since the correct hand (S) was obtained for the chiral carbon derived from commercial (S)-(-)-diphenyl((1-phenylethyl)amine, we are confident that the assignment of absolute configuration at cobalt is correct. Further details are given in Table 3.
$\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Co}(\mathrm{CO})_{2}$. Finely divided lithium ($1.50 \mathrm{~g}, 0.219 \mathrm{~mol}$) was suspended in 250 mL of dry THF under argon. The mixture was heated at $65^{\circ} \mathrm{C}$ in an oil bath and a mixture of indene ($30.5 \mathrm{~g}, 0.263 \mathrm{~mol}$) and 1,5 -cyclooctadiene ($27.8 \mathrm{~g}, 0.258$
mol) was slowly added with stirring. Continued stirring for 1 h resulted in a yellow solution. The oil bath was removed and anhydrous $\mathrm{CoCl}_{2}(13.9 \mathrm{~g}, 0.107 \mathrm{~mol})$ added slowly over a 25 minute period. This stage of the reaction is vigorously exothermic. The solution was stirred for an additional 30 min . The resulting dark red-brown solution was cooled to room temperature and filtered through a Schlenk filter fitted with a 5 cm silica gel plug. Removal of volatiles in an oil pump vacuum at $40^{\circ} \mathrm{C}$ left a dark residue which was taken up in 200 mL of hexane and stirred under an atmosphere of CO at room temperature for 90 min . Filtration through a short plug of silica gel and removal of volatiles in oil pump vacuum (0.1 Torr) gave the crude product as an air-sensitive, deep red-brown oil ($22.1 \mathrm{~g}, 90 \%$). IR: $\nu(\mathrm{CO}$), 2020, $1960 \mathrm{~cm}^{-1}$.
$\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Co}\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right) I(\mathrm{CO})$ (1). A slight excess ($4.30 \mathrm{~g}, 14.5 \mathrm{mmol}$) of perfluoropropyl iodide $\left(\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{I}\right)$ was added via a syringe at room temperature to a solution of $3.30 \mathrm{~g}(14.3 \mathrm{mmol})$ of $\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Co}(\mathrm{CO})_{2}$ in 100 mL benzene under an atmosphere of N_{2}. Continued stirring at room temperature for 40 h resulted in the formation of a dark red-brown solution containing some black precipitate. The precipitate was collected on a glass frit, washed with a small amount of hexane and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal solvent (water aspirator followed by oil pump vacuum) left the crude product as an air-stable black powder. Additional product was recovered by chromatography of the filtrate on a $300 \times 35 \mathrm{~mm}$ silica gel column (2:1 benzene : hexane elution) to give a total yield of $5.71 \mathrm{~g}(80 \%)$ of 1 , m.p. $>120^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{OCOF}_{7} \mathrm{I}$ (Found); C, 31.35 (31.71), H, 1.42 (1.83)\%. IR: $\nu(\mathrm{CO}), 2081 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 5.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.84$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.74\left(\mathrm{~d}, J=8.5,1 \mathrm{H}, \mathrm{H}_{4}\right), 7.62\left(\mathrm{t}, J=8.50,1 \mathrm{H}, \mathrm{H}_{5}\right), 7.53(\mathrm{~d}, J=8.50$, $\left.1 \mathrm{H}, \mathrm{H}_{7}\right), 7.43\left(\mathrm{t}, J=8.50,1 \mathrm{H}, \mathrm{H}_{6}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 71.94\left(\mathrm{C}_{1}\right), 95.37\left(\mathrm{C}_{2}\right)$, $87.95\left(\mathrm{C}_{3}\right), 111.65,109.46\left(\mathrm{C}_{3 \mathrm{a}}, \mathrm{C}_{7 \mathrm{a}}\right), 133.12\left(\mathrm{C}_{5}\right), 132.31\left(\mathrm{C}_{6}\right), 128.72\left(\mathrm{C}_{4}\right), 124.32$ $\left(\mathrm{C}_{7}\right), 197.78(\mathrm{CO}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-47.59\left(\mathrm{~d},{ }^{2} J=208.1, \mathrm{C}_{\alpha} \mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}\right),-51.15$ $\left(\mathrm{d},{ }^{2} J=208.1, \mathrm{C}_{\alpha} \mathrm{F}_{\mathrm{a}} F_{\mathrm{b}}\right.$), -111.94 (d, ${ }^{2} J=277.9, \mathrm{C}_{\beta} F_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}$), $-115.70\left(\mathrm{~d},{ }^{2} J=277.9\right.$, $\mathrm{C}_{\beta} \mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}$), -79.73 ($\mathrm{s}, \mathrm{CF}_{3}$).
$\eta^{5}-C_{9} H_{7} \mathrm{Co}\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right) I\left(\mathrm{PNH}^{\star}\right)(2 a)$, method A. A solution of (S)-(-)-diphenyl ((phenylethyl)amino)phosphine ($\mathrm{PNH}^{*}, 0.564 \mathrm{~g}, 1.85 \mathrm{mmol}$) in 15 mL benzene was added slowly to a solution of $1(0.921 \mathrm{~g}, 1.85 \mathrm{mmol})$ in 30 mL benzene at room temperature. After stirring for 30 min , the solution was placed in an ice bath for 10 min and the benzene solvent removed by sublimation in an oil pump vacuum to afford a dark red-brown powder ($1.37 \mathrm{~g}, 95 \%$). TLC (elution with THF: hexane $1: 5$) and ${ }^{1} \mathrm{H}$ NMR analysis indicated the presence of a single isomer, which was shown to be 2 a . The crude product was crystallized at $-20^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane under a dinitrogen atmosphere to give pure 2 a as well formed, rectangular black crystals, m.p. $132^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{CoF}_{7}$ INP (Found); C, 49.57 (49.21), H, 3.51 (3.23), N, 1.81 (1.82)\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \mathbf{2 a} \delta 4.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $5.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$ and $\left.o-\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.42\left(\mathrm{~d}, 1 \mathrm{H}, o-\mathrm{PC}_{6} H_{5}\right), 7.87(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{7}$ and $o-\mathrm{C}^{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $3.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}^{\star} \mathrm{H}\right), 2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 1.25(\mathrm{~d}, J=6.5,3 \mathrm{H}$, CH_{3}) ; 2b $\delta 4.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 5.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.40-7.90\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 3.66(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}^{\star} \mathrm{H}\right), 2.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 0.90\left(\mathrm{~d}, J=6.5,3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2 \mathrm{a} \delta 72.56$ $\left(\mathrm{C}_{1}\right), 94.82$ (d, $J=8.1, \mathrm{C}_{2}$), 78.57 (d, $J=9.4, \mathrm{C}_{3}$), 112.53, $111.71\left(\mathrm{C}_{3 \mathrm{a}}, \mathrm{C}_{7 \mathrm{a}}\right.$), 124.35-145.63 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 54.69(\mathrm{~d}, J=12.4, \mathrm{CH}), 27.24\left(\mathrm{~d}, J=3.2, \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2 \mathrm{a} \delta-58.17\left(\mathrm{~d},{ }^{2} J=247.7, \mathrm{C}_{\alpha} F_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}\right.$) , $-58.57\left(\mathrm{~d},{ }^{2} J=247.7, \mathrm{C}_{\alpha} \mathrm{F}_{\mathrm{a}} F_{\mathrm{b}}\right.$) $-107.86\left(\mathrm{~d},{ }^{2} J=277.3, \mathrm{C}_{\beta} F_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}\right),-112.19\left(\mathrm{~d},{ }^{2} J=277.3, \mathrm{C}_{\beta} \mathrm{F}_{\mathrm{a}} F_{\mathrm{b}}\right),-79.96(\mathrm{~s}$,
CF_{3}). Polarimetric data, $[\alpha](\lambda):-320^{\circ}(579 \mathrm{~nm}),-670^{\circ}(546 \mathrm{~nm}),-1100^{\circ}(436$ nm).
$\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Co}\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right) I\left(\mathrm{PNH}^{\star}\right)(2 a)$, method B. A solution of (S)-(-)-diphenyl ((phenylethyl)amino)phosphine ($\mathrm{PNH}^{\star}, 0.01629 \mathrm{~g}, 0.05335 \mathrm{mmol}$) in 3 mL benzene was added slowly to a solution of $1(0.02377 \mathrm{~g}, 0.04773 \mathrm{~mol})$ in 4 mL benzene at room temperature. After stirring for 10 min , the solution was placed in a refrigerated bath at $-11^{\circ} \mathrm{C}$. After the solvent was frozen benzene was removed by sublimation in oil pump vacuum over 48 h .1 H NMR analysis showed that the crude product contained a $34: 66$ mixture of $\mathbf{2 b}: \mathbf{2 a}$.

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for a grant in support of this work. Z.Z. acknowledges Memorial University for a graduate fellowship.

References and notes

1 G.J. Baird, J.A. Bandy, S.G. Davies and K. Prout, J. Chem. Soc., Chem. Comm., (1983) 1202; S.G. Davies and J.I. Seeman, Tetrahedron Lett., 25 (1984) 2709; S.G. Davies and J.I. Seeman, Tetrahedron Lett. 25 (1984) 1845; G.J. Baird, S.G. Davies, R.H. Jones, K. Prout and P.J. Warner, J. Chem. Soc., Chem. Comm., (1984) 751; S.G. Davies, I.M. Dordor and P.J. Warner, J. Chem. Soc., Chem. Comm., (1984) 956; M. Brookhart, D. Timmers, J.R. Tucker, G.D. Williams, G.R. Husk, H. Brunner and B. Hammer, J. Am. Chem. Soc., 105 (1983) 6721; J.W. Faller and K.H. Chao, J. Am. Chem. Soc., 105 (1983) 3893; J.W. Faller and K.H. Chao, Organometallics 3 (1984) 927; J.W. Faller and D.L. Linebarrier, J. Am. Chem. Soc., 111 (1989) 1937; J.W. Faller, J.A. John and M.R. Mazzieri, Tetrahedron Lett., 30 (1989) 1769.
2 H. Brunner, C.R. Jablonski and P.G. Jones, Organometallics, 7 (1988) 1283; C.R. Jablonski, T. Burrow and P.G. Jones, J. Organomet. Chem., 370 (1989) 173; C.R. Jablonski and H. Ma, 74th Canadian Chemical Conference and Exhibition, Hamilton, Ontario, Abstracts, IN-390, 1991.
3 E.L. Eliel, The Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, p. 63.
4 H. Brunner, J. Doppelberger, P. Dreischel and T. Moellenberg, J. Organomet. Chem., 139 (1977) 223.

5 R.T. Baker and T.H. Tulip, Organometallics, 5 (1986) 839 and references therein; S.A. Westcott, A.K. Kakkar, G. Stringer, N.J. Taylor and T.B. Marder, J. Organomet. Chem., 394 (1990) 777.

6 R.S. Cahn, C. Ingold and V. Prelog, Angew. Chem., Int. Ed. Engl., 5 (1966) 385; K. Stanley and M.C. Baird, J. Am. Chem. Soc., 97 (1975) 6598; T.E. Sloan, Top. Stereochem., 12 (1981) 1.

7 J.K.M. Sanders and J.D. Mersh, Prog. Nucl. Magn. Res. Spec., 15 (1983) 353.
8 H. Brunner, G. Riepl, R. Benn and A. Rufinska, J. Organomet. Chem., 253 (1983) 93.
9 Kinetic studies of Co epimerization in related chiral $\mathrm{CpCo}{ }^{*}\left(\mathrm{PNH}^{*}\right)(\mathrm{X})$ I complexes show similar results. C.R. Jablonski and N. Brunet, unpublished results.
10 H. Bönnemann and W. Brijoux, in R. Ugo (Ed.), Aspects of Homogeneous Catalysis, Vol. 5, 1984, p. 75.

11 A. Salzer and C. Täschler, J. Organomet. Chem., 294 (1985) 261.

[^0]: Correspondence to: Dr. C. Jablonski, Department of Chemistry, Memorial University, St. John's, Newfoundland A1B 3X7, Canada.

[^1]: * Reference number with asterisk indicates a note in the list of references.

